Gene Woodstock

Curious, self-motivated, natural leader willing and able to listen to the data and derive actionable insights. My quantitative approach to data science emphasizes collaboration and inclusion.

Website GitHub YouTube

LinkedIn

(510) 435-5904 Seattle, WA

WORK

Data Scientist

JANUARY 2017 TO PRESENT - Predictive Analytics Consultant

- Improved model performance from -2.4% expected value to produce a +13.5% return-on-investment in a highly efficient and liquid global financial market.
- Identified new data sources and built data pipelines to efficiently and consistently gather fresh data for analysis – ETL.
- Explored and analyzed data to engineer custom features EDA.
- Translated quantitative subject matter expertise into qualitative data insights and confirmed results with hypothesis tests – AB Testing.
- Visualized and deployed analysis onto interactive Tableau dashboards.

PROJECTS

QB-iQ — Measuring Quarterback Decision-Making

- Restructured, aggregated and cleaned over 15 million rows of data.
- Trained ML models to predict QB performance using spatial coordinates.
- Deployed via advanced interactive Plotly data visualization.

Good Dogs — Helping at-risk shelter dogs get adopted sooner (Team Lead)

- Aggregated data from dynamic data sources into a streamlined data pipeline for efficient model deployment on a web application.
- Engineered features to find predictive-signal in an highly noisy data set.
- As team lead, set project direction as for a team of 4 data scientists. Identified goals and organized checkpoints to ensure product was delivered on time.

EDUCATION

General Assembly

SEATTLE, WA

Data Science Immersive.

California State University, Sacramento

SACRAMENTO, CA

B.S. Business Administration. Honor Student, Dean's List.

SKILLS

LANGUAGES

Python, R, SQL, Git, JSON, Markdown, Googling

gene@genewoodstock.com

LIBRARIES

TensorFlow, Keras, Scikit-Learn, Pandas, NumPy, Tidyverse, dplyr, H2O.ai, BeautifulSoup

MACHINE LEARNING

Linear Regression
Neural Networks
Support Vector Machines
Bootstrapping
Decision Trees
Computer Vision
Natural Language Processing
Transfer Learning
Unsupervised Learning
Big O Notation
Inferential Statistics
Probability Theory
Hypothesis Testing

DATA VISUALIZATION

Plotly, Tableau, MatplotLib, Seaborn, Heroku, StreamLit

PLATFORMS

PySpark, AWS, REST API, Google Colab, GitHub, Anaconda, Excel, Word, Powerpoint